SO ERE e T

FHENLIAHBUIpr oI ipEAZI AR AL
FI L B R AR A Rk ¢

S T

o Y I TR

# % % % @ NOST 108-2629-B-1824-005-
5 # B : 108087 01p 1109£10% 31p
HoFE o EAFRMEE LRGP
T TERE IR PR

T RO XS B S kN

PE LB AR D FAla-RiEmm 8 4k

AT E R 2 e lE L SRE BN
(B T2, §  ARERE REGIRE L RiLF )
SRS X EEEEER SY S ul N ntd

P X R/ 110 & 01 * 21 P



N
P B
o4 R

) GRS 1S ﬁ4ﬁ&#2m%?&a‘&%$ﬁﬁ@£ﬁwg

£oo P EAREREL DY T a2 R s e
PREA NG AP RAES e g4 ol pr (ADH) &2
FE E p (ALDH) $15 (R 30 &0 2 i SR < Lo 7
BAREP bl R 0 TS A F AR E B Rop L B o
ADH / ALDH:& 723 % 3% % Je b7 %8 B cnh % » & 465 1Rt 4
» B B AR R ot F R dmie R B o Bt R3EHF Y
BiERRImE I e i A AT AR ARA R > KT R
G A TSR A B @ BT G o Pl EYE
%1571 9ﬁ“&@&ﬁﬂ%wﬁwﬁww”ﬁmﬁﬁxﬁi’”
F{W*ﬁ%&*MH/MME“EQﬁ #ﬁm¢uﬂ(wmfr
% A4 (haplotype) 0B 25 - @ 32ADHIC rs2241894 - ADHIB
rs1229984 » ALDHIBI rs2073478 » ALDHZ rs886205
» 14767944 > rsd6483284rrs671 o % 8 s g B Hq ¢ > &
4 ADHIC rs2241894 TTA F A& sk xE T f /ph (OR =
0.25° 95%CI 0.09-0.75 - p <0. 0001) # ALDHZ2 e i SNP2. B &
WA T fE o A A H MALDH2E £ A2 e e By § B o fP bR B
Y RADHICIE & 3 »v 4l o A gl T e 5js g o
rs2241894 78 F1 4| # 5 ﬁﬁADHlCi}éliﬁﬂ%E%#Bj it (p=0.04) -
SBAEAR T (EH I Y fFF] R 4R B o ﬁlﬁADHlCif;éJii ¥ erahf o3
(B H+iE= 366 95%CI 92.7~639.4>p = 0.009) - ADHIC
rs2241894 8 & & i &g 4158 7 mfé”‘fm“l i 2 T2 =A% 5
& %A F(minor allele) » Vi awry @ k28,59 » &L &
P RIE23.6% 0 M ez AEY vErE A & F i~ Fl(najor
allele) BI A 7 #hor 0 ADHIC rs2241894 TTA F1A| & & e ijs
%&xﬁ&_Pum#%%%ﬁ AKZREF] FPEAET K
E’-p\.\.l«LL;?IEJ

fooirh mep Bhu] RAH

: Alzheimer’ s disease (AD) is the commonest type of dementia

among older people. There are substantial evidence of sex
differences in AD prevalence, disease course, and
prognosis. There are molecular pathways governing sex
differences in AD pathophysiology. Mitochondrial
dysfunction is an early feature of AD. Alcohol
dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) play
central role of oxidative stress. In Taiwan, men are more
likely being alcoholics than women. Alcohol-gene
interaction in diseases has been found between sexes.
ADH/ALDH pathway was involved in a number of risks of AD,
including oxidative stress, hypertension, alcohol habit,
and cerebral vascular endothelial cell integrity. This 1-
year project enrolled 157 AD and 168 age- and sex-matched
control subjects to examine the association of AD with
ADH/ALDH single nucleotide polymorphisms (SNPs) and
haplotype construction, including ADHIC rs2241894, ADH1B
rs1229984, ALDHIB1 rs2073478, ALDH2 rs886205, rs4767944,
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rs4648328, and rs671. This study observed that ADHIC
rs2241894 TT genotype was negatively associated with AD in
a recessive genetic model (OR=0.25, 95% CI 0.09-0. 75,
p<0.0001) in women. A strong linkage disequilibrium was
observed among the four examined SNPs of ALDHZ. No
haplotype was related to AD. The plasma ADHIC level in AD
was higher than that in control. We also found a
significant interaction effect of AD-1rs2241894 genotype on
plasma ADHIC level (p=0.04). This interaction effect was
attributable to the association between AD and plasma ADHIC
level (B estimate =366, 95% CI 92.7~639.4, p=0.009). The
genetic distribution of ADHIC rs2241894 showed strong
ethnic heterogeneity, in which the T allele was the minor
allele accounting for 28.5% in our study and 23.6% in East
Asians, while 1t was a major allele in global populations.
In summary, this study revealed a suggestive association
between ADHIC rs2241894 and female AD. Further large sample
size case-control studies are needed before rs2241894 can
be interpreted as a protective genetic factor of AD in
women.

Alzheimer’ s disease, sex, mitochondria, alcohol
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Abstract
Key words: Alzheimer’s disease, sex, mitochondria, alcohol

Alzheimer’s disease (AD) is the commonest type of dementia among older people. There
are substantial evidence of sex differences in AD prevalence, disease course, and prognosis.
There are molecular pathways governing sex differences in AD pathophysiology.
Mitochondrial dysfunction is an early feature of AD. Alcohol dehydrogenase (ADH) and
aldehyde dehydrogenase (ALDH) play central role of oxidative stress. In Taiwan, men are
more likely being alcoholics than women. Alcohol-gene interaction in diseases has been
found between sexes. ADH/ALDH pathway was involved in a number of risks of AD,
including oxidative stress, hypertension, alcohol habit, and cerebral vascular endothelial
cell integrity. This 1-year project enrolled 157 AD and 168 age- and sex-matched control
subjects to examine the association of AD with ADH/ALDH single nucleotide
polymorphisms (SNPs) and haplotype construction, including ADH1C rs2241894, ADH1B
rs1229984, ALDH1B1 rs2073478, ALDH2 rs886205, rs4767944, rs4648328, and rs671.
This study observed that ADH1C rs2241894 TT genotype was negatively associated with
AD in a recessive genetic model (OR=0.25, 95% CI 0.09-0.75, p<0.0001) in women. A
strong linkage disequilibrium was observed among the four examined SNPs of ALDH2. No
haplotype was related to AD. The plasma ADH1C level in AD was higher than that in
control. We also found a significant interaction effect of AD-rs2241894 genotype on
plasma ADH1C level (p=0.04). This interaction effect was attributable to the association
between AD and plasma ADH1C level (p estimate =366, 95% CI 92.7~639.4, p=0.009).
The genetic distribution of ADH1C rs2241894 showed strong ethnic heterogeneity, in
which the T allele was the minor allele accounting for 28.5% in our study and 23.6% in
East Asians, while it was a major allele in global populations. In summary, this study
revealed a suggestive association between ADH1C rs2241894 and female AD. Further
large sample size case-control studies are needed before rs2241894 can be interpreted as a
protective genetic factor of AD in women.



1. Background

Alzheimer’s disease (AD) is the commonest type of dementia among older people (QUERFURTH
AND LAFERLA 2010; SCHELTENS et al. 2016). There are substantial evidence of sex differences in
AD prevalence, clinical manifestation, disease course, and prognosis (Rocca et al. 2014;
MAZURE AND SWENDSEN 2016; BACIGALUPO et al. 2018). Although having low education partly
contributes to higher incidence of dementia in women than in men, non-modifiable biological
factors, such as sexual dimorphism in brain structure and function, also contributes to sex
differences in AD phenotypes (RoccA et al. 2014; FILON et al. 2016). Sex difference in genetic
instability has been suggested as the observation that effects of Apolipoprotein E (APOE) variants
on the AD risks are more pronounced in women (ALTMANN et al. 2014). APOE &4 allele increases
the AD risk by 3-fold higher in people carrying one €4 allele and 12-fold higher in those with two
(CorDER et al. 1993). A recent study utilizing global gene expression profiles found four other
genes expressed differently between sexes in AD (glutamate metabotropic receptor 2, estrogen-
related receptor beta, kinesin family member 26B, and aspartoacylase) (SuN et al. 2019).
Therefore, there are molecular pathways governing sex differences in AD pathology. Although
genes cannot be modified, factors that interact with sex related variants may be intervened to
prevent AD.

Mitochondrial dysfunction is an early feature of AD. Accumulation of B-amyloid peptide (AP,
B-amyloid plaques) plays an important role in AD pathogenesis. Accumulation of AP causes
neuronal death via a number of mechanisms including oxidative stress, neuroinflammation,
excitotoxicity, and apoptosis and directly affects mitochondrial respiratory enzyme activity and
triggers mitochondrial membrane permeability (PARIHAR AND HEMNANI 2004; HANSSON
PETERSEN et al. 2008; ABRAMOV et al. 2009). Mitochondria are vulnerable to oxidative stress and
are major sources of intracellular reactive oxygen species (ROS) (MOREIRA et al. 2007). Studies
suggest that AP1.42 inhibits cytochrome c¢ oxidase (COX) activity at an early stage of AD (KIsH et
al. 1992; PARKER AND PARKS 1995; CARDOSO et al. 2004; CROUCH et al. 2005).

Mitochondrial AB-binding alcohol dehydrogenase (ABAD, EC 1.1.1.178) , HGNC: HSD17B10,
GRCh38: X:53,431,257-53,434,375) has been found to be up-regulated in AD neurons (MORSY
AND TRIPPIER 2018). AP interacts with ABAD to induce a conformational change, which
prohibits ABAD binding to nicotinamide adenine dinucleotide (NAD+) and prevents its role in
the oxidation of substrates and consequently causes changes in mitochondrial membrane
permeability (LUSTBADER et al. 2004). In addition to A toxicity, removal of toxic aldehydes in
cells also plays a central role of the other two protein families, alcohol dehydrogenase (ADH) and
aldehyde dehydrogenase (ALDH) (BosRoON et al. 1980; JACKSON et al. 2011). ADH families (EC
1.1.1.1) are a group of dehydrogenase enzymes that facilitates the interconversion between
alcohols and aldehydes or ketones with the reduction of NAD+ to NADH during biosynthesis of
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various metabolites (BosrON et al. 1980). ALDHSs families (EC 1.2.1.3) are a group of enzymes
that catalyse the oxidation of aldehydes. Mitochondria ALDH convert acetaldehyde to acetate as
the rate-limiting step in liver mitochondria (JACKSON et al. 2011; CHEN et al. 2014). These genes
participate in a wide variety of biological processes involved in the physiological and
pathological effects from exogenously and endogenously generated aldehydes. Both high ADH
activity and low ALDH activity cause an excess of acetaldehyde and results in oxidative stress. In
the clinical significance, ADH genetic variants were associated with alcohol dependence (ENG et
al. 2007; CHIANG et al. 2016) and coronary artery disease (WANG et al. 2014), while ALDH2
deficiency causes acetaldehyde accumulation and mitochondria dysfunction and increase risks of
AD (KamINOo et al. 2000; GRUNBLATT AND RIEDERER 2016), Parkinson’s disease (PD)
(GRUNBLATT AND RIEDERER 2016), hypertension (KATO et al. 2011), ischemic stroke (CHEN et al.
2014), and cerebral vascular endothelial cell integrity (SoLiTo et al. 2013).

Sex difference in alcohol exposure, alcohol bio-distribution, and status of central nervous
system diseases

A recent prospective cohort study examining alcohol consumption and risk of dementia in a 23
year follow-up suggested that alcohol consumption is a risk of dementia for both sexes (SABIA et
al. 2018). In Taiwan, men are more likely being alcoholics. Our hospital-based studies showed the
rate of alcohol consumption was 0% in women vs. 26% in men in normal controls and 1.5% in
women vs. 46% in men in stroke patients (CHEN et al. 2006b; CHEN et al. 2009a). The impact of
alcohol is greater in men then in women due to the difference in their alcohol habit. In addition,
the toxic effect of alcohol can be influenced by gene; for example, men carrying APOE €2¢€3
tended to have more stroke than those with €3¢3, when they have alcohol exposure (CHEN et al.
2009a). Another example for alcohol-gene interaction is class Il ADH (glutathione-dependent
ADH). Women develop higher blood alcohol levels than men in spite of an equal alcohol intake
due to a smaller gastric metabolism in women by lesser activity of class Il ADH in females
(BARAONA et al. 2001). Therefore, sex difference in the effects of ADH and ALDH genes on AD
should be tested to illuminate the genetic roles on AD for a personalized management (SULTATOS
et al. 2004).

Regulatory effect of ADH and ALDH genes

To date, the majority of the identified genetic variants of AD reside in noncoding regions with
unclear functions. The functional genetic variants associated with AD and the related quantitative
traits are largely unknown. Expression quantitative trait loci (eQTL) are defined as loci that
harbor sequence variants which regulate gene expression in specific cell or tissue types
(TURPEINEN et al. 2015). Expression differences result in phenotypic variation among individuals.
eQTLs therefore can serve as major determinants for the function of certain genes, in this
proposal, ADH and ALDH genes, that regulate the expression of causal genes.
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There are no reports concerning transcriptomic patterns of the various ADH and ALDH
MRNAs in the AD brain tissues to date, whereas protein alterations were demonstrated in
distribution of the mitochondrial ALDH2 in glia cells of cerebral cortex and hippocampus of AD
patients (PIcKLO et al. 2001). ALDHZ2 protein activity was also shown to significantly increase in
the putamen of AD patients (MICHEL et al. 2010). In the temporal cortex of AD, activated
astrocytes expressing both ALDH1A1 and glial fibrillary acidic protein were more prominent than
those in controls (SERRANO-P0OZO et al. 2013).

ADH exists in multiple forms as a dimer and is encoded by at least seven different genes. There
are five classes of ADH, and the hepatic form (class 1) is the primarily ones in human cells. Class
1 consists of a, B, and y subunits that are encoded by the genes ADH1A (HGNC symbol,
Cytogenetic location: 4923, Genomic coordinates (GRCh38): 4:99276365-99291027), ADH1B
(GRCh38: 4:99306386-99321441), and ADH1C (4:99336491-99353044) (SULTATOS et al. 2004).
The well-studied genetic variants for ADH genes in Asian included rs2241894 (ADH1C,
chr4:99344976, c.453A>T, p.Thrl51=) and rs1229984 (ADH1B, chr4:99318162, Missense
Variantc.143A>G, p.His48Arg) (ENG et al. 2007).

ALDH?2 is one of the 19 ALDH isozymes in human cells that are essential for the metabolism
and detoxification of a wide range of endogenous and exogenous aldehyde substrates (ENG et al.
2007). ALDHZ2 is most efficient in metabolizing aldehydes and is the rate-limiting enzyme in the
ethanol metabolism, oxidizing acetaldehyde to acetic acid both in the liver and brain (CHEN et al.
2014). The well-studied genetic variants for ALDH genes in Asian included rs2073478
(ALDH1B1: chr9:38396068, Missense Variant, ¢.320G>A, p.Argl07His) (JACKSON et al. 2013),
rs886205 (ALDH2, chr12:111766623, 2KB Upstream Variant, A>G), rs671 (ALDH2,
chr12:111803962, Missense Variant, ¢.1510G>A, p.Glu504Lys) (ZHAO AND WANG 2015),
rs4648328 (ALDH2, chrl12:111784984, Intron Variant, C>T), andrs4767944 (ALDH2,
chrl2:111771537, Intron Variant, C>G,T).

2. Objective and specific aims

Given that ADH/ALDH pathway is involved in a number of risks of AD, including oxidative
stress, hypertension, alcohol habit, and cerebral vascular endothelial cell integrity, this 1-year
project aimed to discover genetic functional loci for aiding AD diagnosis and understanding
mechanisms in both sexes. This proposal also aimed to discover the effect of the modifiable factor,
alcohol consumption, on the associations of ADH and ALDH genes with AD association. SNPs
and haplotype construction were used for association tests. Plasma levels of ADH and ALDH2
were measured in normal controls and AD patients. Sex difference in alcohol consumption and
gene-alcohol interaction were tested and adjusted.
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3. ik

Patients were recruited from Chang Gung Memorial Hospital (CGMH). A patient or her/his
legally acceptable representative provided written informed consent to participate. If the patient
was incapable of giving informed consent, the legally acceptable representative consented on
behalf of the patient.

Patient and control subject recruitment

This study was designed as a two-step process. First, we enrolled 157 AD patients and 168 age-
and sex-matched control subjects in a pilot study. AD diagnosis was made according to the 2011
diagnostic criteria of the National Institute on Aging-Alzheimer’s Association workgroups
(NIAAA) (MCKHANN et al. 2011). Participants of the control group were recruited randomly
utilizing the following inclusion criteria: (1) gender- and age-matched subjects providing informed
consent, (2) subjects who came to CGMH for a health exam or treatment for diseases other than
neurodegenerative diseases or cerebrovascular diseases, (3) subjects ascertained from community,
and (4) no medical history of neurodegenerative or cerebrovascular diseases, no overt medical
diseases, such as renal failure, myocardial infarction, or cancer. Second, the number of AD
patients was expanded to 339. A total of 2504 healthy participants selected from the Taiwan
Biobank were included in the extension study. The Taiwan Biobank is a prospective
population-based study that enrolled healthy seniors with extensive baseline phenotypic
measurements, genomic data, and stored biological samples. The criteria for selecting the control
groups from the Taiwan Biobank were the age range 50-70 years, no history of stroke or dementia,
and self-reporting as being of Taiwanese Han Chinese ancestry (CHEN et al. 2016). Details on the
Taiwan Biobank can be found on its official website (https://taiwanview.twbiobank.org.tw/index).

Definition of alcohol consumption:

Our prior studies discovered that alcohol drinking >210 g/week is a risk factor of stroke in
the Taiwan population (CHEN et al. 2006b; CHEN et al. 2009a). Therefore, this proposal applies
the same cutoff point for alcohol consumption to study the inter-correlation of gene, alcohol,
and dementia risks. For the investigation of the alcohol effect on the genetic expression and
effect, participants who have alcohol consumption in the prior year before enrollment is defined
as current drinker. We classify participants who used to have alcohol and report no alcohol
consumption over the previous year as former drinkers.

Sample collection and genomic DNA preparation

Genomic DNA was extracted from 10-ml peripheral blood samples using the QlAamp DNA
Blood Mini Kit (Qiagen, Valencia, CA, USA) as follows: 20 uL of QIAGEN Protease (or protease
K) was mixed with 200 pL of buffy coat via a 15-S vortex step. The mixture was then incubated at
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56 °C for 10 min after adding 200 pL of Buffer AL. Next, 200 pL of 96-100 % ethanol was added,
followed by a 15-s vortex and transfer to a QlAamp Mini spin column. The silica membrane was
washed via centrifugation with Buffers AW1 and AW2. Genomic DNA was eluted with Buffer
AE, and the quantity and quality were determined using a Nanodrop (Thermo Fisher Scientific,
Waltham, MA, USA) and Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA, USA).

Genotyping and haplotype construction for cases and control

Based on a previously reported association with alcohol dependence (EDENBERG AND FOROUD
2013), this study analyzed seven SNPs, namely, ADH1C rs2241894, ADH1B rs1229984,
ALDH1B1 rs2073478, ALDH2 rs886205, ALDH2 rs4767944, ALDH2 rs4648328, and ALHD?2
rs671. Genomic DNA was extracted from peripheral leukocytes using the Stratagene DNA
extraction kit (La Jolla, CA, USA). SNP polymorphisms were genotyped using TagMan® Assays
in the ABI Prism 7900HT Sequence Detection System (catalogue #4317596, Applied Biosystems,
Foster City, CA, USA) (ScHLEINITZ et al. 2011). Plasma ADH1C level was determined using
human ADH1C ELISA kit (catalogue #MBS2889930, MyBioSource, San Diego, CA, USA) and
monitored spectrophotometrically at 450 nm on a multifunctional microplate reader (Tecan infinite
200) by following the manufacturer’s instructions. Levels of ADH1C were determined from a
standard curve. Patterns of linkage disequilibrium (LD) were evaluated using Haploview v4, and
haplotypes were reconstructed using PHASE 2.0 (BARRETT et al. 2005) based on the LD results.
Haplotypes with a frequency <1% were excluded from the association analysis. In participants
from the Taiwan Biobank, SNP genotypes were obtained from the data derived from the custom
Taiwan Biobank chips and run on the Axiom Genome-Wide Array Plate System (Affymetrix,
Santa Clara, CA, USA).

Statistical analysis

Pearson’s y2-test or t-test was used to compare the demographic data and the distributions of
genotypes of AD and control. Two-tailed P-values were derived from the y2-test or Fisher’s exact
test. Association analyses were performed stratified by sex. Hardy—Weinberg equilibrium was
performed via y2-test for all SNPs at a significance level of 0.05. Multivariable logistic regression
was used to analyze the phenotype-genotype associations of AD with ADH and ALDH alleles
under dominant, recessive, and additive genetic models. The covariables included age, years of
education, HTN, DM, and alcohol use. Since considering Bonferroni correction, the significance
level was set to 0.007 in pilot study and 0.01 in extension study. The permutation testing was
performed when the P-value was under Bonferroni correction. Analysis of interaction effect (CHEN
et al. 2009b) was performed to evaluate how carrying APOE &4 influence the ADH1C rs2241894
to AD susceptibility. All the data analyses were performed using SAS software version 9.1.3 (SAS
Institute, Cary, NC, USA). Association of the interaction effect between AD and rs2241894
genotypes on the plasma ADH1C level was tested by the general linear models (GLM) with
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adjustment for age, sex, DM, HTN, and alcohol. We also perform analysis of interaction effect of
AD-rs2241894 genotype in ADH1C level.

Power estimation

We evaluated the ability to detect an association between an SNP and AD via a power
calculation implemented in QUANTO version 1.0 (GAUDERMAN 2002). When Minor allele
frequency (MAF) >0.2 under a recessive genetic model at a significance level of 5%, we observed
that the power to identify an association was greater than 0.8 when the per-allele genetic effect
was greater than 3.5 and 2.0 in the pilot case-control study and in the extension study,
respectively.

4, Bt

Demography of the 1-year case-control study

Atotal of 157 AD patients and 168 controls were included. The years of education were
higher in the female AD patients than in the controls (Table 1). The age and sex between the AD
patients and the controls were matched in this dataset. The proportion of APOE &4 carriers was
higher in the AD patients than in the controls. The proportion of DM was higher in the female
patients with AD than in the controls. There were no differences in age, HTN frequency, and the
proportion of alcohol use. As the proportion of alcohol use was remarkably different between
sexes, the analyses were stratified by sex.



Table 1. Background demographic distribution and frequency of the genotype in the pilot study

Males (n =147) Females (n = 178)
AD Controls  p-Val AD Controls
p-Value
(n=73) (n=74) ue (n=84) (n =94)
Age (years) 69.4+9.0 67.1+53 006 654+%59 67.0+6.3 0.08
Education (yrs) 84141 9.3+47 0.31 74+45 5647 0.01
Hypertension(%) 55.40% 52.51% 0.69 45.2% 44.7% 0.94
DM (%) 20.30% 21.10% 0.9 36.9% 20.2% 0.01
Alcohol use (%) 17.60% 16.90% 0.92 1.2% 1.1% 0.94
APOE &4 carrier 30.1% 12.3% 0.02 43.4% 21.7% 0.01
ADH1B
rs1229984
49.4/39.5/11.1 56.2/41.1/2.7 0.14 60.7/35.7/3.6 53.2/42.6/4.3 0.6
TT/TC/CC
ADH1C
rs2241894
43.8/42.5/13.7 52.1/38.4/9.6 0.55 54.8/44.0/1.2 46.8/43.6/9.6 0.05
CC/ICT/TT
ALDH1B1
rs2073478
47.9/36.6/15.5 52.8/31.9/15.3 0.82 41.0/51.8/7.2 48.4/36.6/15.1 0.07
GG/GT/TT
ALDH2
rs886205
77.0/21.6/1.4 78.1/205/1.4 0.99 82.1/17.9/0.0 74.5/22.3/3.2 0.18
GG/GA/AA
rs4767944
48.6/41.9/9.5 41.1/49.3/9.6 0.63 51.8/41.0/7.2 47.8/38.0/14.1 0.34
TT/TC/CC
rs4648328
67.1/28.8/4.1 57.5/38.4/4.1 0.46 68.7/26.5/4.8 64.9/31.9/3.2 0.66
CC/ICTITT
rs671
46.6/35.6/17.8 46.6/42.5/11.0 0.44 47.6/41.7/10.7 41.5/50.0/8.,5 0.53
GG/GA/AA

Abbreviations: n=number, AD= Alzheimer disease, ADH= alcohol dehydrogenase, ALDH=
aldehyde dehydrogenase

Data are expressed as percentage or mean + SE. Comparisons between AD cases and controls
were analyzed using the y2 test or t-test where appropriate.



Genotype frequency and association analysis of the 1-year case-control study

All seven SNPs were in Hardy—Weinberg equilibrium at a significance level of 0.05. The
frequencies of each genotype in the AD and control subjects are listed in Table 1. The proportion
of ADH1C rs2241894 TT genotype (minor allele T) was significantly lower in the female patients
with AD than in the female controls. In the female group, ADH1C rs2241894 was significantly
associated with AD in the recessive genetic model (OR=0.25, 95% CI 0.09-0.75, p<0.0001).
APOE ¢4 carriers had no interactive effect between AD and ADH1C rs2241894. This study did not
find an association between AD and the other six SNPs in the female groups and any candidate
SNPs in the male groups.

Haploview analysis of ALDH2 SNPs

In the pilot case-control study, a haplotype block of ALDH2 was further constructed by
rs886205, rs4767944, rs4648328, and rs671 using Haploview (4.2), where there was one block
with strong LD. In the haplotype analyses, there was no association between the haplotype and
AD susceptibility.

Plasma ADH1C level

We examined the plasma level of ADH1C and ALDH2. AD had higher ADH1C level in
comparison to control group (n=78, n=72, 781 + 383, 665 + 242, respectively) (p=0.03). After
adjusted by age, sex, HTN, DM, and alcohol, we found a significant interaction effect of AD—
rs2241894 genotype on plasma ADH1C level (p=0.04). This interaction effect was attributable to
the association between AD and plasma ADH1C level (B estimate =366, 95% CI1 92.7~639.4,
p=0.009). There was no association between SNPs and plasma levels for ADH1C and ALDH2.

Discussion
Our study demonstrated a suggestive association between AD and ADH1C rs2241894

genotypes in a recessive fashion. To the best of our knowledge, this is the first study to propose
ADH1C rs2241894 genotypes as a protective factor of AD in the Taiwanese female population.
This study did not find associations between AD and ADH1B (rs1229984), ALDH1B1
(rs2073478), and ALDH2 (rs886205, rs4767944, rs4648328, and rs671), indicating that ADH1B,
ALDH1B1, and ALDH2 played no role in the relationship between alcohol and AD.

The genetic distribution of ADH1C rs2241894 showed strong ethnic heterogeneity, in which the
T allele was the minor allele accounting for 28.5% in our study, 23.6% in East Asians, and 40% in
South Asians, while it was a major allele in Americans (83.0%), Europeans (76.5%), and the
global populations (52.8%) (HUANG et al. 2020). ADH1C rs2241894 (A > G, synonymous variant
Thrl51, exon 5) is a synonymous variant. Moreover, we did not find functional SNPs that have
LD with rs2241894 on SNPsnap (https://data.broadinstitute.org/mpg/snpsnap/). To the best of our
knowledge, there is no report showing an association between AD and rs2241894 or nearby SNPs.
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In Asia, men are prone to alcohol drinking in contrast to women (MiLLwooD et al. 2019), in
which we have demonstrated that the rate of alcohol consumption was 0% in women versus 26%
in men (CHEN et al. 2006a; CHEN et al. 2009b). In addition, the toxic effect of alcohol can be
influenced by genes; for example, men carrying APOE €2¢3 have a greater tendency to suffer from
strokes than those with €3€3 when they have alcohol exposure (CHEN et al. 2009b). In alcoholic
pharmacokenetics, women have increased bioavailability and a faster clearance rate
(MUMENTHALER et al. 1999). Women develop higher blood alcohol levels than men in spite of an
equal alcohol intake due to a smaller gastric metabolism in women due to the lesser activity of
class 111 ADH in females (BARAONA et al. 2001). Therefore, sex differences in the effects of
alcohol metabolism on AD should be tested to illuminate the genetic roles of AD in personalized
management (SULTATOS et al. 2004).

There are some limitations to our study. First, alcohol intake was much lower in Asian females
than in males; therefore, the sample size was small, especially for those with alcohol use. Second,
the frequencies of alcohol-metabolizing genes differ among ethnicities (HUANG et al. 2020).
Besides, the sizes of the examined samples are small and have limited power to detect genetic
association of minor/modest effect with AD. The result should be interpreted with caution and
further studies with larger sample size were indicated for further confirmation of the results herein.

Summary

This study revealed a suggestive association between the genetic variant of ADH1C rs2241894
and female AD in Taiwanese population. Carrying the ADH1C rs2241894 TT genotype may be a
protective factor for elderly female Taiwanese individuals.
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