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中 文 摘 要 ： 根據本研究目的，我們設置三大研究方向 : 1)將只表現ERβ之
4T1乳癌細胞植入小鼠的背側以建立乳癌自動轉移的動物模式。藉由
公鼠，母鼠，去睪丸，或去卵巢等技術， 於宿主體內建置不同賀爾
蒙環境，進行連續二至五周之冷光測定，觀測小鼠體內原位癌的生
長及乳癌細胞的轉移，並分析4T1乳癌組織於不同宿主體內不同賀爾
蒙組成下對脫氫表雄酮之反應，2) 利用DPN (ERβ刺激劑) ，
PHTPP(ERβ拮抗劑) 與ERβ shRNA 改變脫氫表雄酮影響原位乳癌發
展，觀察4T1乳癌組織之生長及乳癌細胞的轉移，與在細胞實驗中
，偵測脫氫表雄酮活化ERβ對細胞型態， 爬行，與入侵之影響。利
用太平洋紫杉醇 (Taxol)、秋水仙素( colchicine )探討乳癌細胞
內的微管 (microtubule)對ERβ加速爬行之作用機轉， 3) 瞬態電
壓感受器陽離子通道刺激劑或抑制劑探討脫氫表雄酮影響細胞型態
， 爬行，入侵與原位乳癌發展.動物實驗結果顯示，E2和DHEA皆可
活化ERβ導致癌細胞擴散並提升癌細胞轉移率。細胞實驗結果顯示
活化TRPV1使得癌細胞型態從圓形變為紡錘狀、細胞內鈣離子濃度提
高以及癌細胞爬行數目增加。接著探討ERβ和TRPV1 兩者之間的關
係。細胞實驗結果顯示，TRPV1拮抗劑 (CapZ和RHC) 會抑制E2和
DHEA活化ERβ導致的細胞型態改變、細胞內鈣離子濃度以及癌細胞
爬行數目。ERβ拮抗劑 (PHTPP) 不會影響OAG和Cap活化TRPV1導致
的細胞型態改變、細胞內鈣離子濃度以及癌細胞爬行數目。動物實
驗結果顯示，TRPV1拮抗劑 (CapZ)會抑制E2和DHEA活化ERβ導致的
癌細胞擴散和轉移率。本研究實驗結果推論DHEA在停經前後45-55歲
的乳癌患者中扮演一個很重要的角色。E2和DHEA活化ERβ導致的惡
性乳癌細胞擴散可能經由TRPV1的臨床藥物獲得改善。

中文關鍵詞： 脫氫表雄酮, 雌激素貝他接受器, 乳癌轉移, 細胞爬行, 微管, 瞬
態電壓感受器陽離子通道

英 文 摘 要 ： It is known that cortisol and dehydroepiandrosterone (DHEA)
are increased with urban stress. Prolonged elevation of
cortisol causes drug resistance of breast tumor cells.
However, it is not clear whether the prolonged elevations
of DHEA affect breast tumor formation.
Since DHEA is a precursor of testosterone and an endogenous
ligand for ERβ, we hypothesized that the activation of
ERβ+ by DHEA accelerates the development of ERβ+ breast
cancer. Today, it is known that the activation of TRPV1
increases the formation of tyrosinated tubulin, and
accelerates dynamics of tubulin networking. Since dynamics
of tubulin nextworking facilitates cell migration, our
working model in this proposal is that activation of ERβ+
by DHEA in a unique host compartment facilitates cell
migration and accelerate spontaneous metastasis of
ERα?/ERβ+ breast cancer via the interaction between TRPV1
and tubulin. Accordingly, three specific aims are proposed:
AIM 1: to explore the involvement of estrogen and ERβ in
DHEA-induced tumor metastasis of 4T1 breast tumor
AMI 2: to investigate the mechanism of ERβ-induced



migration, tubulin dynamics, and TRPV1 activation,
AIM 3: to determine the involvement of TRPV1 in DHEA-
mediated metastasis of 4T1-containg breast cancer.The first
aim was to assess whether DHEA played a role in hormone
imbalance as in the perimenopausal period which accelerated
the formation of ERβ+ breast cancer in chapter 2. The
second aim was to determine whether activation of ERβ by
DHEA caused the migration of 4T1/Luc+ breast tumor cells
via TRPV1.

英文關鍵詞： DHEA, estrogen receptor beta, tumor metastasis, cell
migration, microtubules, TRPV1
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中文摘要 

已知糖皮質酮長期增加使乳癌細胞產生抗藥性。但脫氫表雄酮對乳癌生成之作用

仍不清楚。已知脫氫表雄酮是雄性激素前驅物，也是 ERβ刺激劑。因此本研究

的目的是探討是否脫氫表雄酮於特定宿主環境可促進 ERβ乳癌的發展並研究脫

氫表雄酮活化 ERβ導致加速乳癌發展中所調控的機制。根據本研究目的，我們

設置三大研究方向 : 1)將只表現 ERβ之 4T1乳癌細胞植入小鼠的背側以建立乳

癌自動轉移的動物模式。藉由公鼠，母鼠，去睪丸，或去卵巢等技術， 於宿主

體內建置不同賀爾蒙環境，進行連續二至五周之冷光測定，觀測小鼠體內原位癌

的生長及乳癌細胞的轉移，並分析 4T1乳癌組織於不同宿主體內不同賀爾蒙組成

下對脫氫表雄酮之反應，2) 利用 DPN (ERβ刺激劑) ， PHTPP(ERβ拮抗劑) 與

ERβ shRNA 改變脫氫表雄酮影響原位乳癌發展，觀察 4T1乳癌組織之生長及乳

癌細胞的轉移，與在細胞實驗中，偵測脫氫表雄酮活化 ERβ對細胞型態， 爬行，

與入侵之影響。利用太平洋紫杉醇 (Taxol)、秋水仙素( colchicine )探討乳癌

細胞內的微管 (microtubule)對 ERβ加速爬行之作用機轉， 3) 瞬態電壓感受

器陽離子通道刺激劑或抑制劑探討脫氫表雄酮影響細胞型態， 爬行，入侵與原

位乳癌發展。動物實驗結果顯示，E2和 DHEA皆可活化 ERβ導致癌細胞擴散並提

升癌細胞轉移率。細胞實驗結果顯示活化 TRPV1使得癌細胞型態從圓形變為紡錘

狀、細胞內鈣離子濃度提高以及癌細胞爬行數目增加。接著探討 ERβ和 TRPV1 兩

者之間的關係。細胞實驗結果顯示，TRPV1拮抗劑 (CapZ和 RHC) 會抑制 E2和

DHEA活化 ERβ導致的細胞型態改變、細胞內鈣離子濃度以及癌細胞爬行數目。

ERβ拮抗劑 (PHTPP) 不會影響 OAG和 Cap活化 TRPV1導致的細胞型態改變、細

胞內鈣離子濃度以及癌細胞爬行數目。動物實驗結果顯示，TRPV1拮抗劑 (CapZ)

會抑制 E2和 DHEA活化 ERβ導致的癌細胞擴散和轉移率。 

Abstract 
Both incidence and mortality of breast cancer are much lower in Asia than those in the 
West. However, the onset of peak age for Asian women between 40 and 50 years old 
is much earlier than that for Western women between 60 and 70 years old. Although 
more estrogen receptor (ER)-positive breast tumors (about 70% out of breast tumor 
cases) are found in the Taiwan’s patients than that in American women, conventional 
breast cancer therapies are more effective for Western women in controlling the 
mortality rate than those for Taiwan’s women. Therefore, the mortality rates of breast 
cancer in Taiwan are continuously increased in the past decades. Current studies show 
a positive correlation between urbanization and breast cancer mortality. It is known 
that cortisol and dehydroepiandrosterone (DHEA) are increased with urban stress. 
Prolonged elevation of cortisol causes drug resistance of breast tumor cells. However, 
it is not clear whether the prolonged elevations of DHEA affect breast tumor 
formation.  



Since DHEA is a precursor of testosterone and an endogenous ligand for ERβ, we 
hypothesized that the activation of ERβ+ by DHEA accelerates the development of 
ERβ+ breast cancer. Today, it is known that the activation of TRPV1 increases the 
formation of tyrosinated tubulin, and accelerates dynamics of tubulin networking. 
Since dynamics of tubulin nextworking facilitates cell migration, our working model 
in this proposal is that activation of ERβ+ by DHEA in a unique host compartment 
facilitates cell migration and accelerate spontaneous metastasis of ERα−/ERβ+ breast 
cancer via the interaction between TRPV1 and tubulin. Accordingly, three specific 
aims are proposed:  
AIM 1: to explore the involvement of estrogen and ERβ in DHEA-induced tumor 
metastasis of 4T1 breast tumor  
AMI 2: to investigate the mechanism of ERβ-induced migration, tubulin dynamics, 
and TRPV1 activation,  
AIM 3: to determine the involvement of TRPV1 in DHEA-mediated metastasis of 
4T1-containg breast cancer. This study will demonstrate the importance of ERβ in 
accelerating cell migration and invasion which contributes to the aggressiveness of 
ERα-/ERβ+ breast cancer. In vivo imaged indicated that E2 and DHEA-induced 
metastasis is ERβ-dependent. Analysis of both cell morphology and intensity of 
calcium fluorescence showed, a positive association with Cap (TRPV1 
activator)-increased migrated cells. CapZ (TRPV1 blocker) and RHC (DAG lipase 
inhibitor) decreased the number of migrated cells by E2 and DHEA. However, 
PHTPP did not inhibit the number of migrated cells by Cap and OAG (TRPV1 
endogenous activator). The10-day treatment with E2 and 14-day treatment with 
DHEA promoted the breast cancer metastasis and enhanced the relative abundance of 
ERβ protein. CapZ inhibited the increase of cancer metastasis and ERβ expression by 
an ERβ activator. Taken together, these results suggest that alterations of both cell 
morphology and intracellular calcium concentrations are involved in ERβ-mediated 
and TRPV1-induced breast cancer progression. Abnormal elevation of DHEA in 
perimenopausal period may activate ERβ, open TRPV1, and accelerate 
calcium–dependent tumor development. 
Introduction 
Breast cancer is the leading cause of cancer death in females worldwide (Jemal et al., 
2011) but its risk profiles are different between Western and Asian women. Both 
incidence and mortality of breast cancer are much lower in Asia than those in the West. 
The onset of peak age for Asian women between 40 and 50 years old is much earlier 
than that for Western women between 60 and 70 years old (Leong et al., 2010). 
Current therapies for breast cancer decrease the mortality rate in Western countries 
but do not effectively control the rate in Asian countries. The differences in risk 



profiles and therapeutic outcome between Asian and Western women suggest a unique 
pathogenic mechanism responsible for the development of breast cancers in Asian 
women at the age of 40-50 years old.  
 
Since breast cancer mortality is positively correlated with urbanization, it is of 
importance to review current studies of prolonged elevations of cortisol and DHEA on 
cancer growth. Activation of glucocorticoid receptor by dexamethason (a long-lasting 
cortisol) enhances the expression of genes related to the suppression of 
chemotherapy-induced apoptosis in tumor cells (Herr et al., 2003; Wu et al., 2004; 
Melhem et al., 2009). The increase of glucocorticoid receptor for cortisol is positively 
correlated with rapid recurrence of ER-independent breast cancers (Pan et al., 2011). 
These reports suggest the indirect effect of cortisol in accelerating the recurrence of 
breast cancers by interfering with chemotherapy-induced tumor cell death. Relatively, 
the role of DHEA in cancer development is not explored in depth. DHEA inhibits 
spontaneous formation of breast cancers in female C3H mice (Schwartz, 1979), 
ZR-75-1-containing breast tumors in nude mice (Couillard et al., 1998), and 
1,2-dimethylhydrazine (DMH)-induced tumors in Balb/c mice (Nyce JW et al., 1984) 
but causes hepatocarcinogenesis in F-344 rats (Hayashi et al., 1994). More 
interestingly, DHEA induces the growth of hepatic tumor to a greater extent in male 
than female mice (Rao et al., 2002). The question is why DHEA induces hepatic 
cancer in a gender-dependent manner.    
 
DHEA derived from pregnenolone is an important precursor for both testosterone and 
estrogen. The physiological concentration of DHEA is about 30 nM. Physiological 
concentrations of DHEA are higher in males than females. Today, two ERs (ERα and 
ERβ) have been identified. ERα is mainly expressed in female sex organs (such as 
breast and uterus), whereas ERβ is expressed in both sex organs (such as lung and 
adrenal cortex) and male sex organs (such as prostate) (3). The EC50 of DHEA to 
ERβ was about 200 nM (Chen et al., 2005). DHEA stimulated reporter activity in ERβ 
transfected HepG2 cells (human liver carcinoma cells). The increased activities by 
DHEA was reversed by an ERβ-selective antagonist (R,R-THC (R,R-cis-diethyl 
tetrahydrochrysene) (Miller et al., 2013). Since ERβ exists in non-nuclear 
compartments of hepatic tumor cells, higher levels of DHEA in males may trigger a 
unique mechanism other than cell proliferation to induce a gender-dependent effect on 
hepatocarcinogenesis. 
 
It is well documented that 4T1 cells do not contain ERα. Estrogen cannot induce 4T1 
proliferation. Although elevation of estrogen for two weeks accelerates lung 



metastasis of 4T1 breast tumors (Banka et al, 2006), accelerated metastasis of 
4T1-containing tumor cannot be suppressed by ICI 182, 780, an antiestrogen receptor 
antagonist (Yang et al., 2013). It becomes clear that activation of ERβ by DHEA 
causes tumor formations through the mechanism other than cell proliferation. 
Migration, essential for tumor expansion (Geho et al., 2005), may be responsible for 
DHEA-induced tumor formation. Therefore, our Aim II is to determine whether 
DHEA-induced tumor formation is though activation of cytoskeleton rearrangement. 
It is known that the driving force for cell migration is thought to be provided by 
dynamic re-arrangement of actin and microtubules (Ballestrem et al., 2000). How can 
dynamic changes of cytoskeleton (actin and microtubules) be regulated? Elevation of 
intracellular calcium oscillation accelerates dynamic changes of cytoskeleton. 
Activation of capsaicin receptor (TRPV1), a non-selective cation channel, increases 
intracellular calcium, accelerates disassembly of tubulin, and then enhances dynamic 
networking of tubulin without altering the dynamic networking of actin in neurons 
(Goswami et al., 2006). Storti et al. in 2012 showed a direct association between 
TRPV1 and tubulin (Storti et al., 2012). Without altering ion flow and electrical 
current, estrogen activates TRPV1 via a PKCε-dependent pathway, destabilizes 
tubulin networking via the interaction of TRPV1 with tubulin, and then sensitizes pain 
sensation (Goswami et al., 2011). If DHEA is an endogenous ligand for ERβ, our Aim 
II is to further investigate whether activation of ERβ by DHEA enhances cell 
migration and tubulin dynamics through a TRPV1-dependent pathway and Aim III is 
to determine the involvement of TRPV1 in DHEA-mediated metastasis of 
4T1-containg breast cancer in vivo. 
Material and methods  
 
Reagents and antibodies 
Reagents used were: 17-Estradiol (E2; Sigma Aldrich, MO, USA); 
4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenl (PHTPP; 
Tocris Bioscience, Ellisville, MO) ; diarylpropionitrile (DPN; Cayman Chemical, Ann 
Arbor, MI) ; Paclitaxel (Taxol; Sigma Aldrich, MO, USA) ; Colchicine (Sigma 
Aldrich, MO, USA). Antibodies used were: β-actin (Chemicon, CA ) ; α-tubulin 
(Santa Cruz, CA) ; β-tubulin (Epitomics, CA) ; Pyruvate kinase (AbD Serotec, UK ) ; 
ERα(Santa Cruz, CA ) ; ERβ (Upstate, NY ) ; Acetyl α-tubulin (Sigma Aldrich,  MO, 
USA). 
 
Cell line and cell culture 
MCF7 cells, a human breast tumor cell, were maintained in phenol red-free 
Dulbecoo’s Modified Eagle’s Media-F12 (Sigma-Aldrich, MO, USA) supplemented 



with 1.3 g/L sodium bicarbonate, 10 % fetal bovine serum (Gibco, CA, USA) and 100 
units/ml penicillin-streptomycin (Gibco, CA, USA). MDA-MB-231 cells, a human 
breast tumor cells, were obtained from Ph.D. Chun Hei Antonio Cheung in National 
Cheng Kung University, Taiwan. 4T1 cells, a mouse breast tumor cell transfected with 
luciferase (4T1/Luc+), were obtained from Dr. Ming-Lung Guo in National Taiwan 
University, Taiwan. MDA-MB-231 and 4T1 cells were maintained in phenol red free 
RPMI-1640 medium (Sigma-Aldrich, MO, USA.) with 2 g/L sodium bicarbonate, 
10% fetal bovine serum (Hyclone, CA, USA), 100 units/ml of penicillin and 
streptomycin (Gibco, CA, USA). All cells were incubated at 37 °C, 5 % CO2. 
 
Animal care 
BALB/c mice (18-20 g) at the age of 4 weeks were obtained from the National 
Cheng-Kung University Laboratory Animal Center, Tainan, Taiwan, in a controlled 
environment (temperature 24±1°C, humidity 50% at a photoperiod of 12 light : 12 
dark, from 7 A.M. to 7 P.M. ), and fed ad libitum with standard rat chow (PMI 
Nutrition International, Inc., Missouri, U.S.A.). Experimental protocols of animal 
studies in this study were proved by Animal Committee and animal experiments were 
performed according to the “Guide for the Care and Use of Laboratory Animals” of 
National Cheng-Kung University. 
 
In vivo tumor xenograft model 
4T1/Luc+ cells (1x105 cells/mouse) were transplanted into the subcutaneous region 
of dorsal flask of intact male, intact female, and ovariectmoized female mices at the 
age of 4-5 weeks .One day after transplantation, all mice studied received daily 
injections of E2 (20 μg/kg/day) or E2 with PHTPP (400 μg/kg/day), an ERβ 
antagonist intraperitoneally for 2 weeks. 
 
In vivo imaging 
One day after the last injection, the mice were anesthetized with 4% isoflurane 
(AErrane®, Guayama, USA) inhaled through the Soft Lander® (Shin-Ei Industry Co., 
Taiwan) at a flow of 2 L/min (mixed with air). Luciferin (100 mg/kg, Cold Spring 
Harbor Laboratory, USA) was injected intraperitoneally. The mice were scanned 
using an IVIS Spectrum (Caliper Life Sciences, Alameda, CA). Bioluminescent 
signals were quantified using Living Image 3.0 (Caliper Life Sciences, Alameda, 
CA).Quantified bioluminescence consisted of averaged photon radiance on the animal 
and was expressed as photons/sec/cm2/sr (sr = steradian). Quantified bioluminescence 
covered area on the animal and was expressed as tumor area (cm2). 
 



Cell counting assay 
2x104 cells were seeded onto a 24-well plate and incubator for 24 hr. Cells were 
treated with E2 at different dose in serum-free medium for 24 hr. after they were 
starved for 12 hr. DMSO was a vehicle control. After treatment, cells were trypsinized 
and harvested. Cell population was determined by trypan blue exclusion assay and the 
number of cell were counting by using hemocytometer.    
 
Counting of cell with morphological changes and measuring the cell area 
Cells in serum free medium were treated with vehicle (0.1 % DMSO) or E2 (10 nM) 
for 3 or 24 hr. A cell was counted as “morphological changes” with more than 2 
polarized protrusions or counted as the elongated cell which the ratio of long/wide 
was more than 2 were measured by using Motic Image Plus 2.0 software (Motic 
Instruments Inc., Canada).  The number of protrusion cells and elongated cells were 
calculated and expressed as percent of total cells. The area of cells was measured by 
using Motic Image Plus 2.0 software.  
 
MTT assay 
5x103 cells were seeded onto a 96-well plate and treated with 5g/μl of 
3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT, 
Sigma-Aldrich, MO, USA) in a final volume of 200 μl for 4 h. After the conversion of 
MTT to formazan by mitochondrial dehydrogenases in living cells, the purple 
precipitates were dissolved in dimethyl sulfoxide and detected by ELISA reader 
(Sunrise, Tecan, Switzerland) at 490 nm. 
 
Migration assay 
Migration of tumor cells was analyzed by Boyden chamber (48 well, 8 mm2 area, 
Neuro probe Inc, MD, USA). Trypsinized cells were washed with PBS, resuspended 
in RPMI, and placed into the upper chamber with a polycarbonate filter (8 μm pore 
size, Neuro probe Inc, MD, USA). The lower chamber was filled with medium 
containing 10% FBS as a chemoattractant. After a 12-h treatment, cells in the upper 
chamber were removed with a cotton swab. Cells present on the lower surface of the 
filters were fixed in methanol for 10 min. Filters were then stained with hemataxylen 
(Vector Laboratories Inc, CA, USA). These images were obtained with the 20x 
objective lens. For statistical purposes, the total number of cells migrated in 20 
microscopic fields per well were counted. 
 
Data analysis and statistical evaluation 
Data are expressed as the mean ± SEM (standard errors). Survival rate and necrosis 



percentage of mice were analyzed by chi-squire tests on SPSS 17.0 (SYSTAT 17.0, 
SPSS Science, CA, USA). Time-dependent change in tumor development for multiple 
comparisons was analyzed by two-way ANOVA analysis of variance followed by 
Bonferroni's test or Dunnett's T3 test for post hoc comparison on SPSS 17.0. 
Statistical analysis for one factor was performed by T’test or one-way ANOVA 
analysis and Bonferroni's or Dunnett's T3 test hoc test for multiple comparisons or 
with t-tests for two-group comparisons on SPSS 17.0. P < 0.05 was considered to be 
statistically significant. 
 
Results 
To fully characterize the role of ERβ in the metastasis of 4T1-containing tumor, we 
studied the effect of E2 and DHEA on 4T1 cell proliferation and migration in vitro 
first. Furthermore, we examined the effect of E2 and DHEA on 4T1-containing tumor 
metastasis in vivo. E2 and DHEA from 10-6-10-9 M did not affect cell number and 
cell viability. PHTPP from 10-7-10-9 M did not affect the cell number and cell 
viability whereas 10-7 M decreased the cell number (Fig. 7). To examine the role of 
ERβ activation on 4T1 cell migration, an ERβ blocker, PHTPP, were used in Boyden 
chamber migration assay. Migration assay showed that 10-8 M E2 and 10-8 M DHEA 
increased the number of migrated cells. 10-7 M PHTPP (Fig. 8) and knockdown of 
ERβ (Fig. 9) inhibited the E2- and DHEA-increased number of migrated cell. The 
results suggested that E2 and DHEA induced 4T1 breast tumor cell migration through 
ERβ but was not involved in cell proliferation.  
To further examine the effects of E2 and DHEA on cancer metastasis from primary to 
secondary sites, tumor tissues in the primary site (breast tissue) and secondary site 
(liver) were isolated for luminescence detection 10 days and 14 days after 
transplantation. A 10-day treatment with E2 (20 μg/mouse/day) (Fig. 10) and 14-day 
treatment with DHEA (20 μg/mouse/day) (Fig. 11) increased the total density and 
metastasized ratio of 4T1 breast tumors at the primary sites, which was inhibited by 
PHTPP (10 μg/mouse/day). These results indicated that the induction of 
4T1-containing tumor metastasis by E2 and DHEA. 
3.3.3. Activated TRPV1 causes cell migration via tumor cell morphological changes 
and the elevation of intracellular calcium 
Tumor cell morphological changes and the elevation of intracellular calcium 
contribute to cell migration. To fully characterize the role of TRPV1 on 4T1 cell 
migration, we studied the effects of Cap (TRPV1 activator) on 4T1 cell proliferation, 
morphological changes, intracellular calcium levels and migration. Cap and CapZ 
(TRPV1 blocker) from 10-6-10-9 M did not affect the cell number and cell viability 
(Fig. 12). 10-9 M Cap increased the ratio of length / width, the intensity of calcium 



fluorescence and number of migrated cells. 10-8 M CapZ inhibited the ratio of length 
/ width, the intensity of calcium fluorescence and number of migrated cells by Cap 
(Fig. 13). 
To further confirm the incrase of intracellular Ca2+ concentrations induced cell 
migration, cell morphology and intracellular calcium wereassessed. EGTA 
(extracellular Ca2+ chelator) and ionomycin (Ca2+ transporter across cell membranes) 
were used to modulate intracellular calcium concentrations. 10-8 M ionomycin 
increased the migrated cell number and intensity of calcium fluorescence (Fig. 14). 1 
mM EGTA inhibited the increased number of migrated cells and intensity of calcium 
fluorescence by ionomycin and Cap (Fig. 15).  
To exclude the possibilities that the increase of migrated cells is due to 
inonomycine-induced cell proliferation, MTT assay was used. 10-8 M ionomycin did 
not affect the cell viability (Fig. 16). The migrated cell number did not change (Fig. 
17) although 1 mM EGTA decreased the cell viability. The results suggested that Cap 
induced 4T1 breast tumor cell migration through TRPV1 induced-cell morphological 
changes and extracellular Ca2+ influx but did not involved in cell proliferation. 
3.3.4. Activated ERβ accelerates cell migration via TRPV1 
To determine the role of TRPV1 in E2- and DHEA- induced cell migration, calcium 
concentration image and Boyden chamber migration assay were used. 10-8 M E2 and 
10-8 M DHEA increased the ratio of length / width, the intensity of calcium 
fluorescence and number of migrated cells. 10-7 M CapZ inhibited the ratio of length 
/ width, the intensity of calcium fluorescence and number of migrated cells by 10-8 M 
E2 (Fig. 18) and 10-8 M DHEA (Fig. 19).  
To further determine whether activation of TRPV1 by E2 or DHEA requires the 
presence of diacylglucerol (DAG) which activates protein kinse C, a DAG analogue 
(OAG) and diacylglucerol lipase inhibitor (RHC) were used. 10-9 M OAG increased 
the ratio of length / width, the intensity of calcium fluorescence and number of 
migrated cells. 10-8 M RHC inhibited the ratio of length / width, the intensity of 
calcium fluorescence and number of migrated cells by OAG treatment (Fig. 20). To 
exclude the possibility that the increased of migrated cells is due to cell proliferation, 
MTT assay was used. 10-9 M OAG did not affect the cell viability (Fig. 21). 
Moreover, 10-7 M RHC lowered the ratio of length / width, the intensity of calcium 
fluorescence and number of migrated cells by E2 (Fig. 22) and DHEA (Fig. 23). 10-8 
M PHTPP did not inhibit the ratio of length / width, the intensity of calcium 
fluorescence and number of migrated cells by OAG (Fig. 24) and Cap (Fig. 25) 
treatments. Knockdown of ERβ did not inhibit the number of migrated cells by OAG 
and Cap (Fig. 26). These results suggested that activated ERβ accelerates cell 
migration via TRPV1. 



3.3.5. Acceleration of tumor metastasis by activated ERβ is TRPV1-dependent  
To confirm the role of TRPV1 in E2-and DHEA-induced 4T1 spontaneous metastasis 
from primary to secondary sites, tumor tissues in primary and liver were isolated for 
luminescence detection 10 days or 14 days after transplantation. A 10-day treatment 
with E2 (20 μg/mouse/day) and a 14-day treatment with DHEA (20 μg/mouse/day) 
increased the total density and metastasized ratio of 4T1 breast tumor at primary sites, 
which was inhibited by CapZ (10 μg/mouse/day) (Fig. 27). In addition, E2 and DHEA 
increased ERβ expression in tumor tissues. CapZ inhibited the increased expression of 
ERβ by E2 and DHEA (Fig. 28). These results indicated that acceleration of tumor 
metastasis by activated ERβ is TRPV1-dependent. 
Discussion 
    In line with previous study, activation of ERβ alone is positively associated with 
tumor aggressiveness; the present study demonstrated that activated ERβ by DHEA 
facilities breast cancer metastasis. In this study, daily injection of E2 for 10 days 
promoted the breast cancer development, increasing the size of uterus and ERα 
expression in uterus on mature OVX female mice. However, DHEA treatment for 14 
days just accelerated the breast cancer development which did not affect the uterus 
size and ERα expression in uterus. One possible explanation is that E2 activates both 
ERα and ERβ and DHEA may activate only ERβ alone because of different binding 
affinity. E2 shows similar physiological binding affinity to ERα and ERβ ; whereas 
DHEA shows 2 folds greater physiology binding affinity of ERβ compare to ERα. 
Moreover, it is known that E2 enlarged the uterus and increased the uterus ERα 
mRNA expression in ERβ knockout mice. Thus, E2 may activate both ERα, which 
resulted in increasing the uterus size and ERα expression and ERβ, which induced 
breast cancer spreading. While DHEA may just activate ERβ alone, thus just 
facilitating the breast cancer progression. In summary, DHEA is a better candidate to 
activate ERβ to enhanced breast cancer cell migratory ability and breast cancer 
metastasis. 
    Previous studies indicated that TRPV6 channels are positively associated with 
aggressive breast cancer and TRPV1 channels regulate non-invasive MCF-7 breast 
tumor cell proliferation. However, whether TRPV1 plays a role in aggressive 4T1cells 
remain unknown. According our data, TRPV1 expressed in 4T1 cells and regulated 
the migratory ability. Activation of TRPV1 induced 4T1 cell migration. Cell 
morphological changes and extracellular Ca2+ influx contribute to cell migration. 
Although the morphological changes and Ca2+ pattern vary from different cell line, 
they still share familiar points. The cytoskeleton is associated with protruding cellular 
structures that form morphological changes of migrating cells. Ca2+ influx facilitate 
focal adhesion turnover and actomyosin contractility. In brief, our data indicated that 



expression and functionality of TRPV1 channels in 4T1 cells. 
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