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: This current study applies unobtrusive web analytics to

explore online behavior diversity based on different
genders. The findings indicate that regardless of the
website type, female and male visitors definitely exert
very different online behaviors while they visit the
certain website (e.g., television website, labor agency
website, insurance website and ecommerce website).
Therefore, the findings our study outperform prior studies
that merely use survey or experimental design as their
research method. We believe that different research methods
should lead to different research findings, such as male
visitors are more pay attention to the website material
than female visitors do and male visitors are more prone to
ecommerce than female visitors.

: unobtrusive web analytics, research method, behavior flow,

gender difference
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TR RS ETR (landing page) p FEF L BT E p\ S ETH 2N A
I

€’¥£%§€ﬁﬁfﬁhy?ﬁﬁnyéifFﬁﬁ Fm T sk SR E M gy
ﬁaxm{%—ﬁﬂﬁ%§¢ ﬁw&ﬁmﬁé%%? A E I bl AP B 4

mEAITE R RRA - BB EML TR E AP R I E T R 2R
ﬂ&ﬁ;*%w BN el (T 5 LB HRE D R Rk o

CRRGTIEWER

AR AT AR TL F RRI S T P R b T 5 RRIE S AT
A fho T E AU FF B (acquisition) ~ 3B xRS 7 5 PR FEEC (on-site behavior) ™ 2 P R4
He P4 £ (goalconversion) £ F FlA w7 i 2N EF LR o o7 T HprE £ dn e
Y H AR R R B oAz B S AR e A ¥ QR-Code # 4
gﬁifﬁ e pieis o a T8 7 A 4h @ IF A ) dpe? B X DS Fox il a i r
bz BATREBNmERREN R EL o2 TP ’%—ﬁ%ﬂ?ﬁiJ RIE4p e & AT i » ezt
7@%%$&%@ﬁw%%$f% 2 BPEVE AR G R T (e s T TR o



(1) wHpre £

HAERPIF B R F A R 4 2 g ¢ 240F 51 k% (Organic Search) ~ E #&i‘:}&ﬁhﬁi«?}
~ (Direct) ~ A2 448 51 3 (Social) ~ 42 & 1$ %= (Referral) ~ B 425 B 2 (Paid Search) ~ Google
SR midg e (Display) ¥ » # @ 3% 318 & % (Organic Search) &dp § 3% & tedo&F 518 ¥
BE2HEIMETF PR EFR2REE A Pl Ea e s ko a‘%fﬁéhhﬁi;‘] » (Direct) 4p
AL T R e #&i}i‘ > Hept @ R Rk A AL BRI E (Social) 4y 0
A E AL A i'%.hﬂ’t A BN F T *“#&)ﬂ;ﬁ % (Referral) R-Edp3+ 2 LA
ARG g i F e ek 0 A M4EF R 2 (Paid Search) 3 E AHFIIHF R
e MaET e %&?%ﬁ BRI L R Ak 0§ EIE e (Display) B E_d
Google v’L’r:sg.’fT%lz 22y RN CEANEN N € I eI SR TR L S i B A A N ;”g_rzﬁg be & p rben
1 iz 4

MRS A AR e sk TR B P B £ B ¥ Organic Search ~ Direct ~ Social ~ Referral

FPLEFEE “f K Organ1cSearch7 o A g et P et LR A fu;‘ij e
BE-RE o d 3 2 WHF &k % (OrganicSearch) #* - EFEF A P RN LR -

P H s B R A Bl 191,542 s § B R A BcE 178,764 fzgaus'rigﬂ:
LR IF S F iz 20 2 Vi~ DAL ek o

%]

FE4E : Default Channel Grouping  ZRE/E/- E & Hit

FREE BE v | HEER: | B v Q |®&r H @ =T 2|z |m
Default Channel Grouping f3l) EEE v + FEEE v
521,009 521,009
% 485} 60.66% (858,905) % &8+ 60.66% (858,905)
1. ||organic Search female 191,542 [ 36.41%
2. |organic Search male 178,764 N 33.98%
3. | Direct female 61,221 I 11.64%
4. | Direct male 55,952 M 10.63%
5. | Social male 14,148 [l 2.69%
6.  Social female 13,167 [l 2.50%
7. Referral male 6,233 ]1.18%
8. | Referral female 5113 10.97%

ExFl: 10 v EgE: |1 1-8E@8E) €| »

F= 3 S A4 (RARBRP)

—

T B 5 Bk #"‘ Nezbenffpi g ats > 27 fq E IR HL%]’\ (Direct) i F|3t3t2 (4w
%E%zl_;‘ia o Hbpehut pE i Y AF IR AR o LR —‘5*“;& 3,232,845 i+ ~ § (i@ # dﬂf
AlF 2228318 > B AAPEIT T 3 E > AP L S REFNE *‘@*J’\ RN R TR PN ;,1_
gt o
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FZ£ZF ¢ Default Channel Grouping  E/#7+ E #Hi Eit

REHE 57 v |HFEE: | B v Q& B O|Z || = T

Default Channel Grouping AR FEE v N EHEE \d
18,189,214 18,189,214

% 43t 47.83% (38,026,508) % 2E3+: 47.83% (38,026,508)

1. | Organic Search female 5,777,457 [ 26.08%

2. Organic Search male 5,542,734 N 25.02%

3. | Direct female 3,232,845 NN 14.59%

4. | Direct male 2,228,318 [ 10.06%

5. Referral female 1,342,936 [ 6.06%

6. Referral male 1,155,777 M 5.22%

7. Social male 675,868 Ml 3.05%

8. Social female 647,330 M 2.92%

9.  Paid Search male 477,055 . 2.15%

10. Paid Search female 470,872 [l 2.13%

WA RSP E AT GREP 4 o)

TR R RS PR E A a0 2P TR &M_%J ~ (Direct) 22 4% 31 & 4k %
(Organic Search) %ﬁ'g E'Jii Pl enp Rl F L R 0h s Haput iy i B ARRT

B 1“—‘11_%] »~ (Direct) = jVigzhent i —fg'f“‘"”‘ 237,861 i~ 5§ |40 * —*‘ A3 202,300 >
MR T B B ARG 2 P sk b b B B LS L E R z&w PIECEI
Wy w3y o 3FSIHF R F (Organic Search) = 4 igsbent (£ * 4 L fci 182,409 =~ 7
Mg H Rl 134208 o gt R AR E 4R gend ~ (Direct) 2 b H0FSIF R R
(Organic Search) &k 3878 X 5|4 23+ % 5 ph o

‘F\

FZE : DefaultChannel Grouping FuE/#E/ E Hi Eit

REHE 1A v | HpEDc | BB v olex Hle[z|x|=|m
v ¥

Default Channel Grouping R EEE EEE v
724,837 724,837
% &8zt 40.59% (1,785,759) % &85t 40.59% (1,785,759)
1. | Direct female 237,861 N 20.26%
2. | Direct male 202,300 I ©4.89%
3. | organic search female 182,409 N 22.44%
4. | organic Search male 134,208 [N 16.51%
5. Referral female 28,634 M 3.52%
6. Referral male 22,817 [l 2.81%
7. Social female 1,989 | 0.24%
8. Social male 1,365 |0.17%
9. (Other) female 763 |0.09%
10.  (Other) male 509 0.06%

ETFE 10 v & (1 1-10EE10E) ¢ >

M4~ EuBE g A (FE2 78

THL AR PSP ek R FE AN B¢ % T AL E (Social) At E i B
(Referral) £240% 518 4% % (Organic Search) = f&# Pl P szt + e ulgF L R 2 ¢ > 2
f#bi:}ﬁ”élg’ APEI) LR AL A5 (Social) * jViEshenk M FI""‘”ﬁ 17,699 i~
Tt r X RIF 52206 o BAAPRN L P L AR PR T Bp LG £
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FIAA A2 5 A ek o mibG B o I FH I EF R (Organic Search) & ;Ui b ent |
A 70484 s 8 R FRIG 147,717 o LR R AT T B3 B RS B E he
MIFRINFRESNE T IR I li#ij%“@ % (Referral) > & » 728§ P %
Gtk A BB A4 (51,350 vs. 23,520) 0 T L F BB R RFLBEFRESEA B T
+ ARk o

¥ZE:  Default Channel Grouping FEAES R &4 Hit

g m v | gpmmc | R v (o] e B[e[T[x[=]m

Default Channel Grouping S R EEE v ERE v
454,062 454,062
% 283t 54.10% (839,227) % &3t 54.10% (839,227)
1. | social female 17,699 M 3.72%
2. [Social male 52,206 [N 10.97%
3. |Referral female 23,520 M 4.94%
4. |Referral male 51,350 [ 10.79%
5. Paid Search female 4,596 10.97%
6. Paid Search male 8160 W1.71%
7. | Organic Search female 70,484 N 14.81%
8. | Organic Search male 147,717 [ 31.03%
9. Display female 8,002 M 1.68%
10. Display male 10,984 M 2.31%

B~ R PEL T (R P i)

&
K2
[N
T
4
pial
=
It
BN
Wi
A
=1

O TARLLRY #“&mriﬂﬁ'ﬁfﬂm kA T
ek ﬁé‘*%ﬂzé%ﬁ%%%?&"'l&#% HATHEMNABRZIEFLE RS- 2 24
: SHCTAG M LT - Tk a BIRAP 75 chk B g

FEEE: MW

KRB - AEES v

s
b
i
4
1]
IFit®
mE
i
S
"
l"ll

R AEE EEE A EEE M
521,009 521,009
% 4%=t: 60.66% (858,905) % 4&=t: 60.66% (858,905)
1. |female 1 177,231 [ 29.76%
2. |male 1 154,372 [ 05.93%
3. male 2 68,037 I 11.43%
4. female 2 66,575 [ 11.18%
5. male 3 23,838 M 4.00%
6. female 3 23,530 [ 3.95%
7. female 4 13,138 [ 2.21%
8. male 4 13,096 Ml 2.20%
9. female 5 6,805 ] 1.14%
10. male 5 6,726 11.13%

WL- ~PHELIRFEL (DRGNS
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IR ARER ARG R - TRT L EP EREFF RN I E 2
_ e _ . L2 g — & R I 2.
FPEPMABZRINFLL (Bl - cd By 47 SHAPER Ak b ap T
BT - Pk @ BROMFL AP R ST P L o
FEEE: MR
s awEy v |pmn | me v - AEIDNEERE
R Al EE FEE v EEE v
18,189,214 18,189,214
% £+ 47.83% (38,026,508) % 43t 47.83% (38,026,508)
1. |female 1 8,385,802 NN 24.46%
2. | male 1 7,103,508 [N 20.72%
3. female 2 2,100,612 [ 6.13%
4. male 2 1,863,274 M 5.43%
5. female 3 1,182,888 M 3.45%
6. male 3 1,044,480 [l 3.05%
7. female 4 816,416 M 2.38%
8. male 4 732,943 [l 2.14%
9. female 5 626,640 [l 1.83%
10. male 5 571,943 [l 1.67%
- s Y .
ML= 3R 544 (FREN 4z

BRGSO REES G oo AR - PR ERERFR I BT AT K
PIABZRIEFLE Bt 2 od Bl T4 7 F ARG 7 bt oy ZWHT
T PR a BRAMFEAAEDLEE T HDL
EEEE HH
KT WEES v AFED: | BEe v (o] B[ [x]n
&3] AEEK EEE R EEE v
724,837 724,837
% 4851 40.59% (1,785,759) % 4851 40.59% (1,785,759)
1. |female 1 269,433 [ 24.74%
2. |male 1 215,345 [N 19 77%
3. female 2 130,229 N 11.96%
4. male 2 104,625 [ © 61%
5. female 3 71,978 M 6.61%
6. male 3 56,725 [ 5.21%
7. female 4 42,824 [ 3.93%
8. male 4 33919 Il 3.11%
9. female 5 27,686 [l 2.54%
10. male 5 21,927 [ 2.01%
Btz ~#FEEPFEALA (FEST R
I —?ﬁfa'iz-,aﬂ.ﬁ‘:é—' ,;ﬁﬁﬁfwj— 'f‘ga;;'fﬁqgv,yif«; g,:{,}_%g A R Eaa i S s B Bl A B
ZIMEFLE (Bt e od =R gk T WRRE R ek e T - F
$$’m&mﬂ“?a¢9ﬁ#p&%’**ﬁ*%°
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EEHE: MR

JEeE  ASES v | pEED: | mR v [ o)== @Ee[z[x]m
R A EE FEE v EEE v
454,062 454,062

% £EEt: 54.10% (839,227) % 4832 54.10% (839,227)

1. | male 1 162,344 I 28.27%

2. | female 1 82,057 [N 14.29%

3. male 2 49,332 [ 8.59%

4. male 3 35612 [ 6.20%

5. male 4 24,537 [ 4.27%

6. female 2 23,011 [l 4.01%

7. male 5 20,390 [ 3.55%

8. male 6 16,174 [l 2.82%

9. female 3 15119 [l 2.63%

10. male 7 13,409 [l 2.34%

u

Wlte - PERPFTELAN (RFF IR

“%‘@Il__!‘ it - {F}’K— %@ et A H,E ’ J\;"Kéq\g‘%‘%j;i_, %;ﬁ fig ,z’]ﬁ 5k \Pf— » IR g\l “]
R e ¢m?fft~k¥—4¥“’ b BRER b g o P sk T3 PR ) ey L

B TR - kel o tHPE L A REEE T 'Lé” (S KA S S A

(3) B ARE A

-\

PR RS TP R o A PIRAAT R stk PRSP AR B
TR R R e Y FRCHRP LR R YRR (AR PR B ERELS
PR AWM 2P o b (KR PR o d TG AR N 4 -
S0 ARBUR ) Bl 5T BGE TR 2 T T N FARP-T 0P ARE R BRI %
0 B0 R ARGk b 6096280 R ¢ 0 F 61,306 R kLR P
Fadir, He FHAT AP FEFFILEDE

~
\“

FEEE: MR
TEEE v | PR | BR v | Q & B @ || %[
R HAEE v ¥ EEER v
96,280 61,306
% 4FEt: 32.27% (298,371) % 485t 52.13% (117,605)
1. male 57,170 I 57.36%
2. female 40,949 N 42.64%

|
4

F - FEPEREELST (RARGEWERER)

TR 3%‘«$ B gk b np R SR T 18,137,614 = EE ¢ 0 5 3,918,338
S LR R TR RIS SR AT £ E RO
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EEEE T M

KB v | HAomE

B v | Q =z H @ T
sz | EEE v EfEE v
18,137,614 3,918,338
% 4851 47.70% (38,026,508) % 451 47.05% (8,327,264)
1. female 10,149,330 N 48.29%
2. male

8,878,764 I 51.71%

FEPHREELSN RER 4Rt

THRL R EG S P ek P fRE R

A F 693,527 R ¢ 0 4 451,921 (=3
EAER P RESHIE B L PP RES PR FHFF ISR
TEEE BRI
XERE v |HEEN: | B v | alex @Ble[=]|=x |
R fEAE v SEER v
693,527 451,921
% £a51: 38.84% (1,785,759) % 451 41.83% (1,080,441)
1. female 404,598 [N 56.17%
2. male

320,612 (NN 43.83%

WLt ~# 2P HEREL (RGP R

TR ANGRIFF AR AP RE LR T

b3 451,083 i
ERExSPRELRE B T DL

LE Y 4 160,376 3%

,(i,;\, E] %ﬂ LU : F] rs%?-—&:l"é'_g‘%‘% °
TEEE: OE
KEpRE v | ghEme | ER v | Q&w H| ||t |m
e | ERE v ERER v
451,083 160,376
% &E5t: 53.75% (839,227) % 485t 61.00% (262,891)
1. male 309,430 [N 72.31%
2. female

143,685 [N 27.69%

Bl A FEPHFRBZLIT (RFF IR

b AN =

i

g 3}

IK%MJFA\*%A% Elprb oy % 75 %% E .;;p{;%i]v}a]; B3 uﬁr’,;‘pou—r £3
TAGER P LR IIF I EFR 2 S N ek B9 LM BT ARRE A3 F (o b
4’mﬁ%W%$mAH* EHAT- FRfafm - I EREP R FL VR
BAA L A T T ARG R R LR LT TR PEEHF TR R

= &b
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BhakkE RO OHBET P RETT RN L Fon TS RS AN e
FHINA R A LR A oY AR *H)mﬁ:a‘_mﬁgt{@ﬁ
IR

AR T S EAROTIR K T fm;»_ugf;-:gu@f et T f N kg
FRIAPHEBRAFTEL 0TI - R FREFWFINFT AT L L0 0 F r71§ 3
@mﬁﬁ@—EuiﬁﬁﬁﬁTé¢$$£%ﬁ“£:49%ﬁ@o

22 P EFAMBENAR (TR )

VA %A T 05 Ty 7
w45 3 (Organic Search) v x
T (R &= v x
PR = x v

- 3 = ;E}g@«t BARRAPEFLREAR S B A BB ﬁgi.;-] » 4yt (Direct)
B Rgrr gz d A Rg 2 P iRE

1 NP EAREBE LA > A M
FBF F""‘::zﬁ #&@3’\ &h_i‘«%a?:}* QR Code * sV E| Bk I+p 5 > R BIP F &
poEem GEr gt BT R E R #EF B § R G
EW A ekt Elggﬁ%% (p & 1;\:)’m LpEE ATt Ao FNREE £

!

FHe 3 kg 43 233 ﬁf:rﬁiﬂ» ﬁu.h Nk $S "J' 2 gigﬁwﬁa\;ﬁgu,ﬁ~
BRF oL EREA T TP EARER AR P RE G EN B A SRR P
B

S EFESREEELR RER Hp)

V3 AgAR ~ x4 Tk 4 7 4
wffp¥ i (Direct) v x
HTE A (7 =) v x
B AR x v

TAELEGES TR EELRELAR AP L LR E R ek (Direct)
B 40F 51854 % (OrganicSearch) = Vi » H ¥ v 2 e F o peb 2 B 2wy B 2k
THT-FRT DD RS RBREESY —‘F%Lﬁpg;\;{ak PAEE S Tl 30§ o g
ERF AR FHRPELFEFL T AR T AT 2 B R R SR
R Flm LI ﬁiﬁf«rp;}ﬁfﬂ“i&é&g M3 E R o

i+_

22 P EFELRBENALR (G2 R)

VAT S xR Ty 71
wtfpg i (Direct) v x
g i (Organic Search) v x
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HTE e (7 =) v *
PR v x

,—

T%ié?%%%@%ﬁ%?mam?%ﬁnﬁAﬂﬂﬁ’3M*?ﬂiﬁﬁéﬁﬂ%£’
TALARL PP E > ¢ 5 AU E i (Social ~ Referral ~ Organic Search) ~ |5 — F #7121 2
PHEE AR Gdm DI FHL DT PP ERAAL IR IS S LS BRER S
BRI ARRERE g Ris 1077 ¢ BBIF TR F 2 > N R » ko Ra S A TARR
FAETIBPEOTE RS OBRRF LD AP RN Ee AR A Rk S P
%mﬁ%ifﬂéﬁaﬁTE%%ﬁm

23 v PEESRBEEGLE (RFP IR
Vi AAR XA g 7
g i (Social)
g i (Referral)
w4 g i (Organic Search)
HFT & (7 8=1)
pARE =

x| x| %x|%x|%
ANERNIEA NI NI RN

CARRSER Y &

St

ot
E}( i %
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o
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©oe
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Pootpot tho d A eskin B 04T R RSN E SRR S AHD T L FHEE D
Prbp T A FALG E B E b g o P WA Bk 2 5% (casebycase) EITELE 0 A
TF T E AT F REH B (R A e s AR S K PRl & S =R R I A S
PRGN S N R S FRES BT B R L R L
SRRAFHEE T AR B Mk BT m{ B2 #R ﬁ;&«;ﬁﬂ&ﬁ%@»@ﬁm L F A
B 2 A TN R R REE R FERFIRERE PSS
BRpEi T R R R R AR R AR #mm &4“%*“%ﬁm<%ﬁ%¢’
F L R RS e LA E

4
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L INTRODUCTION

How and why visitors browsing a profitable website is a
long-standing issue that attracts researchers continuously
devoting themselves into the understandings of consumer
behavior over the Internet. Some researchers apply online
survey research method to ask respondents answering the
questions about how and why they would like to browse a
certain profitable website and others use online experiment
research method to explore the conditions under which
participants are willing to visit the experimental website.
Although these two streams of studies have been
accumulated sound knowledges regarding consumer online
behavior, both online survey and online experiment research
methods are debatable, because the former is frequently
challenged by its sampling bias, while the latter is usually
questioned by the problem of external validity. Recently, the
technique of Big Data performs a role of savior that resolves
the problems of sampling bias and the lack of external
validity as (1) Big Data technique is very exhaustive in data
collection which captures the entire research population and
therefore sampling bias is less likely to occur (Mayer-
Schonberger and Cukier, 2013) and (2) Big Data technique
helps researchers preventing from the problem of external
validity since it will be difficult to generalize research
findings on the basis of relatively small sampling data
compared to entire data (Xiang et al., 2015). According to

Han-Ping, Tzen

School of Big Data Management
Soochow University
Taipei, Taiwan.
hanping311111@gamil.com

Yung-Sheng, Yang (corresponding author)

School of Management
Chaoyang University of Technology
Taichung, Taiwan.
yang902@motc.gov.tw

the survey reported by McKinsey (2015) that 90% of polled
industries had made significant investments on Big Data
Analytics, representing a prevalent phenomenon that
companies with Big Data investments are trying to pursue
the promised benefits of big data and its advanced analytics.
Similarly, Taobao, the leading online retailer in China which
owns massive amounts of data daily as tons of consumers
visit and purchase on the website and thus Taobao can come
into play the concept of Big Data, such as personalizing
every interaction with customers, competing on value rather
than price with competitors, reducing shopping cart
abandonment, and more specifically visioning the trend of
consumers’ preferences. All these efforts are free of
sampling bias and the issue of external validity due to
acquisition and digestion of huge amount data contributed by
online consumers.

Since the concept of Big Data is getting popular in nearly
all industries and an opportunity provider that assists
researchers to narrow the gap between academy and practice,
it is essential for researchers to reevaluate the findings
asserted by online consumer behavior research, especially for
those with obsolete research methods. We therefore try
reconfirming whether the previous findings of online
consumer behavior research are consistent with the findings
of the current study when we apply Big Data technique to
evaluate the same online behaviors mentioned in prior
studies. The following are our major propositions:

1. Different research methods may result in different online
behavior findings even though the same behavior issue is
measured. We suspect that the findings of previous
online behavior research (either online survey method or
online experiment method) are quite different from that
of Big Data measurement due to the number of
observations.



2. It would be extremely excellent if the findings of
previous online behavior research are the same with the
findings of Big Data online behavior measurement. With
this consistency serving as a gatekeeper, researchers as
well as practitioners can have more confidence about
such consistent findings which in turn affirms the right
direction for idea generation (e.g., tailoring shopping

experience, customer acquisition, and customer retention).

Our study is organized as follows. The next section
introduces what we so-called obsolete research method and
relatively novel research method. The research method and
the data analysis are then described in Section 3, followed by
the summary of analysis outcomes in Section 4. Section 5
draws the discussion of research findings, theoretical
contributions and managerial implications. Limitations of the
study are discussed in Section 6.

II.  LITERATURE REVIEW

Researchers nowadays prefer using online questionnaire
survey to collect behavioral responses more than paper-based
questionnaire, because online survey has many advantages
that complement to the drawbacks of paper-based
questionnaire (Wright, 2005). However, researchers who use
online questionnaire survey to collect behavioral responses
are suffered from the issue of respondent anonymity, that is,
researchers are difficult to confirm that whether the
respondents are their right subjects (Wright, 2005).
Generally speaking, researchers are unlikely to observe all
the respondents in a particular population and thus using
sampling method to infer researched population which in
turn leads to sampling bias.

Online experiment research method, on the other hand, is
another common technique for observing online behavior as
it inherits advantages simultaneously from both online
survey and traditional laboratory experiment (Reips, 2000).
Most importantly, researchers who use online experiment to
monitor online consumer behavior can use IP tracking to
avoid multiple submissions. However, online experiment has
its disadvantages as well. For example, the number of
experiment participants is debatable because researchers
frequently set Type I error to a conventional level which may
result in low explanatory power of a study (Reips and
Béchtiger, 1999). Suffering from this limited sample
participants, research findings are always too narrow in
certain researched populations and therefore leads to the
problem of external validity or generalizability (Erdfelder et
al., 1996).

Big Data Analytics is a novel idea or technique that
researchers can use it to overcome the bottlenecks of online
behavior observation mentioned above. Wamba (2015)
defines Big Data Analytics as a process of examining huge
data to unfold hidden patterns, unknown correlation, and
even meaningful information that can be used to decision
making. Unlike online survey and online experiment that
merely apply limited amount of data to infer findings and

conclusions, Big Data Analytics itself uses huge amount of
data to understand and act on that data and thus preventing
the likelihood of sampling bias and the lack of external
validity. In our study, online consumer behavior data is
regarded as a kind of big data, because (1) There can be so
many people to conduct browsing activities on websites a
day or even a minute and thus producing a large collection of
structural visit data. (2) To any website, visitors may be
referred by many different traffic sources (e.g., social media,
messenger software, online video) that leads to visit data to
be very diverse. (3) A popular website can receive tons of
logs from visitors, for instance, Taobao — the largest
shopping website in China, took less than 7 minutes to reach
RMB 10 billion sales in Double 11 Global Shopping Festival
this year (BBC News 2016), which indicates that there must
be so many frequent transactions happened in Taobao during
Double 11.

III. RESEARCH METHOD

A. Selecting anchoring papers

Since our goal is to reevaluate previous findings of online
consumer behavior research from literature, it is necessary
for us to determine papers that serves as an anchor to
conduct such reevaluation. The selection criteria are as
follows:

(1) The anchoring papers should be published in either
SSCT or SCT journal.

(2) The anchoring papers should be cited by other studies
for more than 100 times, because the more citation a
study receives, the more consensus it generates.

(3) The topic of the selected anchoring papers should
involve in online consumer behavior observation.

With these criteria, we obtain two eligible papers: (1) Online
stickiness: its antecedents and effect on purchasing intention
(Lin, 2007), and (2) Factors affecting the online travel
buying decision: a review (Wen, 2009). The first study
confirmed that the degree of website stickiness increases
consumers’ intention to shop on that website. The second
study conducted a review research and found that the quality
of website design is the composition of information quality,
system quality, and service quality. Among these quality
factors, webpage load time in system quality is one of the
most important items that affects consumers’ subsequent
website visit. As a result, it is unlikely to say that a website is
popular but it has poor system quality to present necessary
webpages to visitors.

B. The big data analytics tool

In order to confirm that different research methods will lead
to different research findings, we apply Google Analytics
(GA) as our Big Data Analytics tool. The reasons that we use
GA are quite intuitive, because it is a free web analytics tool
and it has been adopted by 51% of Fortune 500 companies



(E-nor, 2014). GA works traffic monitoring by embedding a
tag of JavaScript code on webpages, called Google Analytics
Tracking Code, GATC (see Figure 1). When the visitors get
into the monitoring website and visit the embedded pages,
the JavaScript code triggers a JavaScript file which in turn
operates the tracking process for Analytics. It should be
noted that since GATC is embedded in HTML and is
executed by the manner of back-end analytics, visitors are
unlikely to aware that they are being tracked by GA and
therefore reducing the likelihood of Hawthorne Effect (Adair,

1984).
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Figure 1. Schematic diagram of how Google Analytics works.

C. The selected website

A real hotel website was selected as our research subject.
The research hotel promotes online-offline seamless strategy
(i.e., 020 strategy) since 2010 so that their tourists can book
the rooms on the official website and then check-in at the
hotel’s counter. In addition, the researched hotel sometimes
offers e-coupon for the purpose of online-offline big sales
promotion. The reasons that we chose this hotel as our
research subject are as follows:

»  The research hotel is one of leading hotels in Taiwan
and is a metropolitan hotel located in Taipei. With the
convenience of its geographic location and the leading
position within competitors, we believe that the
findings of web analytics are generalizable.

»  The research hotel gets used to apply web analytics as
its online behavior monitoring tool and this adoption is
consistent with our research goal.Nearly every hotel
nowadays provides online booking for their customers,
we therefore believe that the findings of web analytics
are generalizable to hotel industry.

D. Metrics definition and mapping

Since Lin (2007) confirmed that the higher stickiness a
website possesses, the higher purchase intention that website
obtains, we therefore map stickiness and purchase intention
to the metrics of session duration and conversion rate. In GA,
session duration is defined as the length of time a visitor

spends on the page of the website and such stop over can be
seen as a kind of website stickiness. Conversion, on the other
hand, is defined as a valuable action that occurs when the
visitor clicks something on the website, and this click can be
analog to purchase intention when she/he clicks something
related to transaction. Although session duration/conversion
rate are relevant to websites’ profitability, page-load
time/pageview are important as well, because it is unlikely to
say that a website can receive so much profitability without
stable webpage loadings. Thus, we map response (i.e., one of
the items in system quality) and website visit to page-load
time and pageview. Page-load time is calculated how
quickly the website server parses the document and makes
it available for visitor interaction, while pageview is
counted as the total number of pages viewed by the
visitors. With the mappings mentioned above, we can
measure whether or not the findings of previous studies are
consistent with the findings of the current study (see Figure
2).

Browsing stage

A —
— —~

Response Page-load time

¢ Mapping: ¢

Website visit Pageview
Purchase stage
A
—
| Stickiness | Session duration

v

| Purchase intention

) Conversion rate

Figure 2. Mapping metrics from previous studies.

IV. DATA COLLECTION AND ANALYSIS

The tracking code of Google analytics has been
implemented into the each page of research website since
2012. For the four year data collection period (ranging from
01/06/2012~11/28/2016), the research website receives
888,098 users (visitors), and these visitors have been to the
research website for 1,237,796 times (sessions) and have
viewed 4,440,877 web pages. The average session duration
of the visitors is 2 minutes and 56 seconds (see Figure 3).
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00:02:56 35.83%

pr— e |
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Figure 3. Traffic summary of the research website.



A. Browsing stage

To confirm that different research methods may lead to
different online consumer behavior findings, we portray the
measuring metrics in contrast to the ones mentioned in
previous studies. Previous studies stated that the speed of
website response positively affects website visit and this
assertion plots the left hand side of Figure 4 that variable x
(website response) and variable y (website visit) are
positively correlated with each other. However, in the current
study, we suspect that page-load time may negatively affects
pageview when we use web analytics to evaluate the same
causality. If this is true, the negative correlation between
variable x and variable y on the right hand side of the figure
can be affirmed.

Negative Correlation

Positive Correlation
Figure 4. Patterns of the measuring metrics.

Similarly, previous studies stated that the relationship
between stickiness and purchase intention are positively
correlated. However, we postulate that this positive
correlation may be inversed when we apply web analytics to
measure the same causality, that is, the relationship between
session duration and conversion rate may be negative.

Figure 5 shows the results of web analytics. The squares in
red illustrates some conflicts between the findings of the
previous studies and the findings of the current study. For
example, Ave. Page Load Time (deep blue line) and
Pageviews (light blue line) presented on circle 1 and circle 2
run in the same direction, indicating that the relationship
between page-load time and pageviews is positively
correlated and this surprising finding is inconsistent with the
one found by previous studies that the more quick response a
website provides, the more visits that website receives.

== ) B, vt 8. 2098 () Tty v 8, 900

T ———
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Figure 5. The results of web analytics (page-load time/pageview).

Although some conflicts are affirmed, we still find some
findings that are consistent with previous studies (lines
without squares in Figure 5). Figure 6 shows further
evaluation using scatter plot and we can see positive and

negative correlations simultaneously from the figure where
x-axis is avg. page load time and y-axis is pageview.
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Figure 6. The scatter plot using data colloted from GA.

B. Purchase stage

The same analysis was conducted to confirm whether or
not the relationship between stickiness and purchase
intention is consistent with the relationship between session
duration and conversion rate. Figure 7 addresses the analysis
results. The color squares in the figure show different
findings: blue square (pageviews: 687,352 / conversion rate:
0.37%), green square (pageviews: 20,463 / conversion rate:
3.53%), and red square (pageviews: 7,592 / conversion rate:
110.02%). Obviously, the square in red has the highest
conversion rate followed by the squares in green and blue,
whereas the square in red has the lowest pageview followed
by the squares in green and blue. This finding not only
indicates that the higher session durations the visitors spend,
the lower conversion rates they perform, but also implies a
confliction of the findings found from previous studies that
stickiness significantly affects purchase intention. Although
the findings of previous studies cannot be entirely
overwhelmed, we found contrast findings that are opposite to
the ones asserted in the previous studies.
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Figure 7. The results of web analytics (session duration/conversion rate).

V. CONCLUSIONS

The current study uses web analytics tool to reevaluate

""" the findings of online consumer behavior found by previous

studies. The results indicated that different research methods
do actually lead to different research findings even though
the same issue was evaluated. In section 4A, we confirmed
that the relationship between page-load time and pageviews
was positively correlated and in section 4B we affirmed that
the relationship between session duration and conversion rate
was negative. All the web analytics findings are somewhat



different to that of previous studies. Although there can be
other findings that are consistent with the findings asserted
by the previous studies, we found mixed results when we use
web analytics as our tool to monitor online consumer
behavior. The reasons that lead to such an inconsistency may
be that using sampling to monitor online consumer behavior
can only extract a portion of research subjects from the
population and it is very likely to exist opposite behaviors
hidden in the subjects that are not being sampled. This is also
the reason why we would like to rely on the big data
processing ability of web analytics to monitor online
consumer behavior. We therefore conclude that the
generalizability of the findings coming from previous studies
are debatable due do the application of using single research
method to monitor incomplete online consumer behavior.

A. Academic contributions

We apply web analytics to reevaluate the findings of
online consumer behavior found by previous studies and
have confirmed that different research methods actually lead
to different research findings even though the same
behavioral issue was measured. Sometimes researchers rely
on sampling or experiment method to answer their research
questions, because they are unable to access the whole
research population or they are not able to implement
tracking code into the research website. However, the results
deriving from a portion of data does not necessary equal to
everything about the research population, and thus the
generalizability of the research results is debatable. In
summary, web analytics should be treated as a partner of
other online behavior monitoring methods, if the results of
web analytics are consistent with the results of survey or
experiment method, then researchers should be confident to
their research findings. If the results of web analytics are not
totally consistent with the results of other online behavior
monitoring methods, then researchers can have an
opportunity to figure out why they receive mixed results,
whereas if the results of web analytics are quite different
from that of other research methods, it is suggested to trust
the results coming from web analytics, because web
analytics exhibits the characteristics of big data quite well
(i.e., volume, variety and velocity).

B. Practical implications

Drawing on our findings, we provide some important
recommendations for shopping website practitioners. First,
anyone who intends to own a shopping website should
understand that sampling research method does not
completely address what was happened on the website,
because sampling as its term is using a part of subjects from
the research population and thus the findings of
generalizability may not be sufficient. As shown in our
analysis results, some contradictory findings were founded
when we use web analytics to measure the same online

behavior issue asserted in previous studies. We therefore
suggest website practitioners to use multiple online behavior
monitoring methods to keep the findings to be rigorous.
Second, since big data can talk about data itself, thus one
thing that practitioners can do is to increase the traffic of the
research website as higher as possible. As a result, the more
traffic data the website has, the more accuracy of web
analytics that website can derive.
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